
MATHEMATICS OF COMPUTATION 
VOLUME 54, NUMBER 189 
JANUARY 1990, PAGES 63-79 

WEIGHTED INF-SUP CONDITION AND POINTWISE ERROR 
ESTIMATES FOR THE STOKES PROBLEM 

RICARDO G. DURAN AND RICARDO H. NOCHETTO 

ABSTRACT. Convergence of mixed finite element approximations to the Stokes 
problem in the primitive variables is examined in maximum norm. Quasi- 
optimal pointwise error estimates are derived for discrete spaces satisfying a 
weighted inf-sup condition similar to the Babuska -Brezzi condition. The usual 
techniques employed to prove the inf-sup condition in energy norm can be 
easily extended to the present situation, thus providing several examples to 
our abstract framework. The popular Taylor-Hood finite element is the most 
relevant one. 

1. INTRODUCTION 

The Stokes problem, which describes the flow of a viscous incompressible 
fluid, consists of finding u and p so that 

-Au + Vp = f in Q, 

(1.1) divu=O inKQ, 

u=O onOQ, 

where u indicates the velocity and p the pressure, f denotes a given external 
2 

force and Q is a bounded domain contained in JR . This is the formulation 
in the primitive variables u and p, also called velocity-pressure formulation. 
A weak form of (1.1) suitable for finite element approximations is the problem 
of seeking u E V: = [Ho (Q)]2 and p E P: = Lo(Q) such that 

(Vu, Vv) - (divv, p) = (f, v), V v E V, 
(1.2) 

(divu,q)=O, VqeP, 

where (.,*) denotes the inner product in L2(Q), and L 2(Q) is the space of 
L 2-functions having mean value zero. 
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We assume that Q is a convex polygon and {i?1}h is a regular and quasi- 
uniform family of decompositions of Q [15, pp. 132, 140]; h stands for the 
mesh size. Let Vh c V and Ph c P denote finite element spaces associated 

with h . The discrete problem then reads as follows: find uh e Vh and Ah E Ph 

such that 

(Vuh, Vv) - (divv, Ph) = (f, v), V v E h, 
(1.3) (div uh, q)= ?, V q E Ph. 

The discrete spaces Vh and Ph must satisfy a compatibility condition for 

(1.3) to be stable. This constraint is expressed by the celebrated discrete inf-sup 
condition 

(divv, q) 
(1.4) sveu HVVHL2(n) -?flJq1L2(n) ' q E Ph, 

where /l is independent of h [3, 7, 15]. This leads to optimal-order energy 
error estimates as well [3, 7, 15]. 

The continuous inf-sup condition is equivalent to having a bounded right 
inverse for the divergence operator subject to homogeneous Dirichlet boundary 
conditions; this issue is discussed in [2] for polygonal domains. Here we show 
that there exists a right inverse for the divergence operator which is almost 
bounded in weighted Sobolev spaces; this is the only two-dimensional result 
of this paper. This crucial property enables us to introduce a proper notion 
of discrete weighted inf-sup condition and, in addition, to demonstrate that 
usual techniques employed to prove (1.4) can be generalized so as to lead to our 
weighted inf-sup condition. Several examples such as the popular Taylor-Hood 
finite element illustrate the theory. 

We then derive quasi-optimal maximum norm error estimates for spaces sat- 
isfying the weighted inf-sup condition; the error analysis is n-dimensional. The 
main tool is, as usual, the method of weighted Sobolev norms introduced by 
Natterer [17] and Nitsche [ 18]. Our present results contain those in [ 1 1], which 
rely on locally constructing the so-called Fortin's operator. 

An outline of the paper is as follows. In ?2 we prove several a priori esti- 
mates in weighted norms. In ?3 we introduce the weighted inf-sup condition 
and extend standard techniques in energy norm to this new situation; several 
examples illustrate our results. We conclude in ?4 with the error analysis in 
maximum norm. 

2. WEIGHTED A PRIORI ESTIMATES 

We start this section by recalling the definition of the usual weight function 
along with some of its fundamental properties. 

The weight function a is defined by 

(2.1) U(x):= (x-x 012+02)1/2 forx x0 eQ 
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where 0 > h is a small parameter to be determined later on. It is well known 
that a satisfies the following properties [8, 18]: 

(2.2) max [maxa (x) /min a(x)] < C, 
TEJ/j [XET XET J 

(2.3) IDjcr0(x)I < C(j, aorc'-j W~) VX EQ 

where a e R and Djf denotes the tensor of jth derivatives of f. Hereafter, 
the letter C will indicate a positive constant independent of h and x0, but not 
necessarily the same at each occurrence. Moreover, a simple calculation shows 
that 

f24 ax-(2+a)x< f C0- a > 0, (2.4) a - <Cllog0I, a=0, 

for 0 sufficiently small. For a E IR and j E N, the weighted Sobolev seminorms 
are defined by 

JID qlla,: E |la'qllf V q E Hjn A; 
i#1=J 

the same notation will be used for vector-valued functions. 
We assume that for some k > 1, 

VhTD [Pk(T)]2, PhIT Pk_,(T), V TE, 

where Pk (T) stands for the space of polynomials of total degree not greater than 
k restricted to T. Given q E L 2(Q) (or v E V), the symbol Ih = E Ph ED R 
(or vb = IhV E Vh) indicates either its local average interpolant [15, p. 109] for 

continuous elements or its local L 2-projection for discontinuous ones. In view 
of its local character, Ih is an optimal-order interpolation operator in L (Q) 
( 1 < p < ox) as well as in weighted Sobolev norms. Moreover, the following 
superapproximation properties hold: 

(2.5) Ia2q - Ih(a 2q)11,2 < C!hIIqII-, -2 

(2.6) llV~~a -2 h (2.6) a fq - qIe(a 2)]Ilr2 ?<C-(IIqiII-4 + IVql1,-2), 

for all q E Ph ? IR; similar bounds are valid for all v e Vh . These estimates 
come from applying the Bramble-Hilbert lemma. 

We now turn our attention to a priori estimates in weighted norms. Our first 
result is restricted to two dimensions and will play a relevant role afterwards. 

Lemma 2.1. IIqPI1I-2 < Cl log OI'/2IIfIH(Q), V(o E H'(Q). 
Proof. By the Sobolev imbedding theorem in two dimensions [19], we have 

IIsIILs(Q) < CS' 2IoIIHI(Q) ' V2 < s < 0. 
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Making now use of Holder's inequality together with (2.4) yields 

ll-2 ? (f vl2p) 1/2p P -2p/(p- 1)) (p- )/12p 1/2 _ lp l( f l1 , 

The desired result then follows from taking p = log 0K1 . 

To proceed further, we need some well-known energy a priori estimates for 
the Stokes problem. Let b E [H- (Q)]2 and g E L (Q) . Then there exists a ~~~~~~~~~~ 
unique solution (v, q) E V x P to the generalized Stokes problem [15, 21] 

-Av+Vq=b inKQ, 

divv=g inKQ, 

which satisfies 

(2.7) ||v|H'((Q) + ||q||L2(n) < C(|b| H- (Q) + 11g||L2 (n) . 

In addition, if b E [L2 (Q)]2 and g E H~' (Q), then [ 16] 

(2.8) 1V11HH2(n) + jq11H1(n) < C(lb11L2(n) + 1Vg|L2(n)). 

We are now in a position to prove a crucial result. It roughly says that the di- 
vergence operator possesses a right inverse which is almost bounded (uniformly 
in h ) in weighted Sobolev spaces. 

Lemma 2.2. Given g E L 2(Q), set m: = 1Q fl g. Then there exists v E V 
such that 

(2.9) divv = g--m in Q 

and, moreover, 

(2.10) 1VvH112 < C, logo 61/2 1gJ12. 

Proof. In order to construct v E V, we resort to the generalized Stokes problem. 

Let v E V be the solution to 

-Av + Vq = 0, 
(2.11) divv = g-m. 

Here, q denotes a function in L 2(Q) having a mean value to be determined 
0 later on. To prove (2.10), it suffices to deal with the components Yj = Xi -Xi 

(j = 1, 2) of x - xO rather than a [8, p. 148]. Since no confusion is possible, 
we remove the subscript j. We now observe that (uv, juq) satisfies the pair of 

equations 

-A(,uv) + V(,uq) = -2Vu * Vv + qV ,5 

div (uv) =,u(g - m) + v * Vu . 
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Hence (2.7), in conjunction with the fact that u is linear, yields 

(2.12) IIV(#V)IIL2(n) < C(IIvIIL2() + IIqIIH'((Q) + ju(g - 
m)AL 2(n)). 

Our next task is to evaluate the right-hand side of this expression. To bound 
IIqIIHI(n)I we need to introduce an auxiliary function i e C(2(Q) so that 

fa n = 1 . Since q is defined up to a constant, we can choose it so that fa qn = 

0. Given qp E Ho (52), let (qV, A) E V x P be the solution to the auxiliary 
problem 

-AV+VVA= 0, 

divqi = ( - qr, 

where r: = pf . Since the compatibility condition fn (0 - qr = 0 holds, the 
previous problem admits a unique solution. Thus 

(q, (0) = (q, q - qr) = (q, divV) = (Vv, Vq) =-(v, ), 

because ( - or E Ho (Q) yields qV E [H2(Q)]2. Moreover, from (2.8) we deduce 
that 

I(q E ()1 
< CIIVIIL2(n)II - qrIIH(Q) < 

CIIVIIL2(n)II(PIIHi(n) ' 

therefore, 

ll~qlH-'(.Q) < CIIVIIL 2(n) . 

To estimate IIVIIL2(,,) we employ a duality argument. Let (qm, A) E V x P be 
the solution to the auxiliary problem 

-Aq/ + VA =v, 

div y =0. 

In view of (2.1 1) we can write 

IIVIIL2(n) - (Vv , Vyi) - (divv, Al) = (q, div qi) - (g - m, A) 

= -(g, 2.) < jjgjl2i21iAI-2. 

Using Lemma 2.1, in conjunction with (2.8), yields 

IIVIIL2(n) < Cl log 6|1/2 II gII2 . 

It only remains to estimate the rightmost term in (2.12). It follows that 

l8(g - m))II2() < ?| 21g _ M ?2 < C (f 2ugI2 + m2 f 2) 

< Cl logo, lgII2 2, 

where we have used (2.4) and the Cauchy-Schwarz inequality to bound m2 
Replacing the above estimates in (2.12), we find that 

V(YV ) L 2) < C| logo, 
2 

|j||g ||1/ ,2 . 
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This, combined with the equality 
2 

HIVV 12 = 02 VVII2(2) + 
2 

lIiIVVHL2(Q) 

j=1 

and (2.7), implies the asserted estimate. n 

Remark 2.1. The previous argument is essentially two-dimensional. The natural 
n-dimensional analogue of (2.10) would be 

||VvHIan < C logl 01/2 g|On 

If this estimate were available, then the remainder of this paper could be easily 
extended to higher dimensions. 

We conclude this section with an a priori estimate which extends (2.8) to 
weighted Sobolev spaces. 

Lemma 2.3. Let b E [L2(Q)]2 g E Ho(Q) and X E Co' (Q) be given, with 

fQ X = 1. Let (v, q) E V x P be the solution to 

-Av + Vq = b in Q, 

divv = g - mq in Q, 

where m: = fn g. Then there exists a constant C > 0 such that 

(2.13) HID2V 1 + IIVq11 ? C<Qlog0 12 Ibl 2 + IIVg,2 + gL2(n)) 

Proof. As in the previous lemma, we deal with the components Iuj of x - x0 
instead of a, and we remove the subscript j. A simple calculation leads to 

-A(,uv) + V(,uq) = ,ub - 2Vu - Vv + qVu, 

div(,uv) = ,u(g - mq) + Vu - v. 

Using the fact that ,u is linear, and (2.8), we easily obtain 

1D ((V)H 2(Q) + 11V(uq)IIL2(,) < C(|I|bIIL 2(,) + 11g - m042(n) 

+ Iu|V(g - m$)L2(n) + 1V1VIIL2(n) + IHqIHL2(n)) 

We start examining the last two terms. In view of (2.7), we have to bound 

IlbIIH-,(n) and 11g - mOIIL2(n) . Given p E V, we can make use of Lemma 2.1 
to arrive at 

K(b, 5 )| < Ijb|l 211( ||-2 < Cq log0 |12bl|a2II( ||H'(n); 

hence, 

IlbIIH ,(Q) 
< CI logo 01/2 IbI1,2 

At the same time, as m = fn g < C1g9L2(n), we also have PIg - molIL2(n) < 

C11g91L2(n) . We finally argue as in the end of the proof to Lemma 2.2 to obtain 
the desired result. n 
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Remark 2.2. It is not too difficult to generalize Lemma 2.3 to higher dimensions. 
In fact, assuming that Q is sufficiently smooth, thus having precise pointwise 
bounds for the Green's function of the Stokes problem, one might proceed as 
in [14, Lemma 3.2] to end up with 

HID2vllqn + jjVqjjan < C og_ 1/2 (jjbj n+2 + 11VgH71ln+2 + 11gHjn). 

It turns out that this estimate suffices for later purposes. 

3. WEIGHTED INF-SUP CONDITION 

In this section we introduce a proper notion of discrete weighted inf-sup con- 
dition, which is based on a crucial property fulfilled by the divergence operator. 
This will be our main hypothesis in the subsequent error analysis. We also 
demonstrate that standard techniques used to prove the inf-sup condition in 
energy norm can be suitably extended to the present situation, thus providing 
several examples. 

Lemma 3.1. There exists a constant C > 0 such that 

(divv, q) 1i2 
(3.1) sup HVvH2 > CllogO71 jjqj a-2, V qeP. 

-2 

Proof. Given q E P, set g: = a q and let v E V indicate the function in 

(2.9). Hence, 

11VV11H2 < Cl log6j112 H-2qJ1 2 = Cl log60112 jjqj,2 

which, in turn, implies (3.1). n 

Remark 3.1. It would be of interest to know whether or not the inf-sup constant 
fli, = Cl log6-l/2 is optimal. 

In view of (3.1) we say that a pair (Vh' Ph) satisfies the discrete weighted 

inf-sup condition if there exists C > 0 independent of h such that 

(divv, q) -12 
(3.2) sup > Cl logl /1 jqjj2, V q EPh 

VEVh1J ~Vv1H72 

The generalization to higher dimensions consists of simply replacing a 2 and 
a by as and a-, respectively. 

Remark 3.2. The subsequent error analysis relies mainly on the structure of 
(3.2) rather than on the particular expression of I6, . 

Our next goal is to develop two techniques for the effective verification of 
(3.2) and to illustrate their application to well-known finite element spaces. The 
first one is based on the fact that condition (1.4) is equivalent to the existence 
of a global operator rIh: V 

-Vh 
so that [ 12] 

(3.3) (div(v -rhv) q) = C? V q E Ph 

(3.4) H V 
lv|2(n) < CIIVV II2(n). 
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In many practical situations H h can be constructed locally. In this case, quasi- 
optimal pointwise error estimates have been derived in two dimensions using 
a different approach; see [11] where also several examples were reported. The 
following lemma, which resembles the so-called Fortin's trick [1 3], shows that 
(3.2) is valid as soon as we have 

(3.5) ||VFIhvHU,2 < CH|VVHU,2, V V E V. 

This property is an easy consequence of (2.2) provided r'h is a local operator 
or, equivalently, whenever (3.4) is valid locally. Note that 1'h is not required to 
be defined elementwise for (3.5) to hold. Indeed, the definition of H h on one 
element may also involve the adjacent ones, as customary when dealing with 
the local average interpolant [ 15, p. 109; 1]. 

Lemma 3.2. Let r'h satisfy (3.3) and (3.5). Then (3.2) holds. 
Proof. Let q E Ph c P. By virtue of Lemma 3.1, there exists v E V such that 

(div v, q) 2 

11VV112 > Cl log 01 lHqJJ6-2- 

Next, set vh: = rHhV E Vh and use (3.3) and (3.5) to get (3.2). 5 

We now consider some examples for which Lemma 3.2 applies. Let 4 

be made of triangles T and let Al, 2A2, 2.3 denote the barycentric coordinates 
of T. 

Example 3.1. Mini Element. It was introduced by Arnold, Brezzi and Fortin [1] 
as a remedy for the unstable Pi - Pi element. The discrete spaces are defined 
by 

2 
V hIT: = [PI(T) 2.12.22A3P0(T)] PhT:= PI(T), V TeSF 

and Ph c CO(Q); thus k = 1 . The local operator H h was explicitly built in 
[1] as a means to demonstrate stability (see also [15, p. 175]). 

Example 3.2. Bernardi-Raugel Element. The discrete spaces are defined by [5; 
15,p. 134] 

Vh: = [PI(T)] EspanfplP2,P3}, PhT PO(T), VT) 

where pl: = A22.3v1,P2:=2.123v2andP3:=2.122v3 v1 being the unit vector 

normal to the opposite side to vertex i; thus k = 1. This element may be 
viewed as a simplification of the classical P2 - P0 element which turns out to 
fit in our theory as well. 

In many circumstances the operator r1h is not known to be local, as happens 
for the Taylor-Hood finite element [15, 20]; so (3.5) might fail to hold. Our 
next goal is thus to generalize a method due to Boland and Nicolaides [6], which 
reduces the proof of (1.4) to the verification of a local inf-sup condition. To this 
end, we need some extra notation. Let Qh C L 2(Q) be so that Ph = Qh nP 
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and assume that Qh contains the piecewise constant functions. Let Q be 
decomposed into a finite number of disjoint, connected and open macroelements 
Qr which, in turn, are unions of a number of finite elements bounded uniformly 
in h;hence diam(Qr) < Ch for all 1 < r < R. Set 

Vr = {V E h: v = O in Q\Qr} 

J : q EQhl} Pr: = Qrn L2(Qr), 

Ph: ={q e P: qJQ is constant, 1 < r < R}. 

Lemma 3.3. Let the pairs (yr' Pr) satisfy the local inf-sup condition 

(div v, q) 
(3.6) sup J|Vv |2(Q ) - 11L (Q.) V q E Pr 1 < r < R. 

where y > 0 is independent of h. If there exists a subspace Vh Of Vh such that 

the pair (V h, 5Ph) satisfies (3.2), then (Vh' Ph) also satisfies (3.2). 

Proof. The proof is similar to the original one without weights [6; 15, p. 130]. 
Given q E Ph. we split it as follows: 

q = q +q, 

where 

Ph 5 tLi?= I Qrlf q and q*, E Pr 

This is an orthogonal decomposition in L2(Qr) for all 1 < r < R. Hence, 

lq 1122(n ) = Jq* 1122( ) + 11|1|2 2(n 

The fact that diam(Qr) < Ch, in conjunction with (2.2), yields 

(3.7) C 1lq l2, r< Jlq~ 12, + 11qI1-2r22 <C?lql -2 

where IlqJJ-2' : = fn q2a Moreover, by (3.6) and (2.2), there exists vr e 

Vr such that 

(3.8) f q*divv* = lq* 12-2 Q. 

(3.9) ||'V 
* 

||af2 n < C||q ||ff_2 ' ; 

similarly, since (Vh' Ph) satisfies (3.2), there exists v E Vh such that 

(3.10) J divv = IlqII-2, 

(3.11) JJVvI112 < C1 log 6 1/2 I10IU-2 
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Let v* E Vh be defined by v*IQ =v for all 1 < r < R . Next set 

v:= + aV , 

where a = KIlogO 1 and K > 0 is to be selected later on. From (3.11) it 
follows that 

(divV, q*) < Cl logo, l/2jjqjj,2jjq*jj,-2 

Therefore, by (3.8) and (3.10), we have 

(divv, q) > liq* 112-2 + ajjqjj -2 - aCj log j'j12/jqjj 2 jllqjJ-2 

> I I-a-| logo! l) q* 11 a-2 + a(l - Ce) | | a1J2-2 . 

A proper choice of c > 0 and K implies 

(divv, q) > Q(jiq* 112-2 + I log 01-l jjq,12 ) 

On the other hand, (3.9) and (3.1 1) together with the definition of a yield 

IIVvIIa2 ? C~llq~llv 2 + I log 6- 1/2 IqII-2) 

which concludes the proof of the lemma. El 

We now end this section with some applications of Lemma 3.3 to well-known 
finite element spaces. First, let Q be partitioned into triangles. 

Example 3.3. Taylor-Hood Element. This popular finite element is defined by 
[15, 20] 

VhT: = [P2(T)], PhJT2= P(T), V Ted and Ph C C(Q); 

thus k = 2. The local condition (3.6) is valid [15, p. 178], whereas the global 
link is provided by VhIT= [P2(T)]2 and PhT = PO(T) which verify (3.2) (see 
Example 3.2). A direct proof of (3.2) can be readily carried out by repeating 
the original one by Bercovier and Pironneau [4] and Verfurth [22], this time 
with weights. 

Example 3.4. Crouzeix-Raviart Element. Let P1(T) be the space of homoge- 
neous polynomials of degree I restricted to T. Let k > 2 and set [9, 15] 

Vh = [Pk(T) ?l Al A2A3Pk 2(T)] Ph IT: Pk 1(T) V $ 

The local condition (3.6) follows easily from taking single elements to be macro- 
elements nr [15, p. 141]. The spaces Vh and Ph are as in Example 3.3. 

We finally conclude with an example of quadrilateral elements which also 
satisfy (3.2). Let ? be decomposed into convex quadrilaterals. 



POINTWISE ERROR ESTIMATES FOR THE STOKES PROBLEM 73 

Example 3.5. Let k > 2 and set 

Vwhr -[Qk(T)]2 and PhT =Pk_ (T), V TeS, 

where Qk stands for the space of polynomials of degree not greater than k in 
each single variable. The inf-sup condition (3.2) is verified in a similar fashion 
to that above [15, p. 156]. 

4. ERROR ANALYSIS 

The present goal is to prove that under the sole assumption (3.2), quasi- 
optimal error estimates in the maximum norm follow for both velocity and 
pressure. This may be regarded as a natural extension of the standard theory in 
energy norm [7, 15]. Our main tool is the method of weighted Sobolev norms 
introduced by Natterer [17] and Nitsche [18]. 

An outline of the analysis is as follows. We first obtain an error estimate for 
the velocity gradient Vu in terms of errors for the velocity u and pressure p . 
We next derive an error bound for u depending on the errors for Vu and p. 
The weighted inf-sup condition finally provides an error estimate for p as a 
function of the error bound for Vu, and allows the successful assembly of all 
partial results to produce rates of convergence for both physical variables. A 
similar strategy was previously used in [10]. 

Before we get started, we need some further notation, namely, 
e u-u h ep =Pp-h; eu =U -hu ep = -Ph 

where ii and j stand for local interpolants of u and p, respectively. We also 
set 

Eh = |IV(u - Q)ll_-2 + llU - ULr-4 + IIP -pII-2; 

0: = Khl loghl, a: = (KI log hF), 
where K > 0 is a large parameter to be selected. The error equations read as 
follows: 
(4.1) (VeuVv)-(divv,ep)=05 VVEVh, 

(4.2) (div eu, q) = 0, V q E Ph . 

The quasi-optimal pointwise error estimates are summarized in the following 
theorem. 

Theorem 4.1. There exists a constant C > 0 independent of h such that 

(hi loghl) lleullLL(Q) + 1IVeullLo(I?) + I loghl 2llepllL'(.) 

(4.3) 2 
< Cl loghl (inf IIV(U - V)IIL() + inf IIp - qllL (Q?) 

vEVh qEP j 
for all pairs (Vh5 Ph) satisfying the weighted inf-sup condition (3.2). 

The proof of (4.3) will be split into three steps. Our first task is to demon- 
strate the following (partial) error estimate for the velocity gradient. 
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Lemma 4.1. There exist constants K0, C > 0 such that 

(4.4) Vfe -2 < C Ile 2-4 + + leplla-2 + q hj 

for all 6> Koh. 
Proof. Note first that the following equality holds: 

H~~~2 -2 -2 
VeU II,- 2 = (VeU, a V(u - fi)) - (V eu, VVa 

+ (Veu, V(a eu)) =: I+II+III. 

The first two terms can be easily handled in view of (2.3), namely, 

I, II < e|1Veull + CG Ileull _4 + CC Eh . 

Hereafter, E > 0 will indicate a small parameter to be specified later on. Next 
set A: = a 2e and use (4.1) to rewrite the remaining term as follows: 

III = (Ve 11, V(Vg - V/)) + (div(t - Vg), ep) + (div q, ep) =: IV + V + VI. 

The first two terms are again easy to bound, now by virtue of (2.6). Indeed, we 
have 

IV + V < C (hlVeUlia-2 + 
llepfll-2) (lieUI1-4 

+ 
IVWUII,-2) 

? (e+KO )H VeAl-2 

+C [C 2Ih% 112 o+r |ll-4 
+ (1 + 2) Eh 

Making use of the definition of Ag, we obtain 

VI = (dive a 2ep)-((u-) V- -2, ep)-+(eu-V 2, ep) =: VII+VIII+IX. 

A simple calculation based on (4.2) and (2.5) gives 

VII= (diveu, a ep - Ih( eP)) - (div(u - fi), a2ep)+(diveel, I2(p-aP) 

? elve~ll-2 + CC1 + l epl- + CC1 + Ei 4 

At the same time, (2.3) implies 

VIII < CHIU - u1-41epll,-2 < Cllepll-2 + C E 

Term IX will be handled by means of a duality argument. Set g: = e, VaF2 G 

Ho (Q) and let (v, q) E V x P be the solution to the auxiliary problem 

-Av +Vq = 0, 
(4.6) 

divvy) = g - mq$, 
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which, by Lemma 2.3 and (2.1), satisfies 

(4.7) IID2V$112 + 1IVq7ll2 < CO 1(llVeulK-2 + lieII,-4). 

Hence, 
IX= (div(v -il), ep) + (divi, ep) +m(q, ep)) X+XI+XII, 

and we now examine these three terms separately. By (4.7), we easily get 

2 I eIL2 + Cf 
h 2 X < Chllep ll, - 2 D~V 11,2 < e ll 7e u 117-2 + lle ull2 4 + Cc Fllepll -2. 

Making use of (4.1),(4.2) and (4.6), we further split XI as follows: 
XI = (7euI V7(b - v)) + (div eu I q - ); 

thus 

XI < ChllVe 11,-2 (IID vIIU2 + llVqll,2) < Co (11 Veuli-2 + I1eILT4). 

By virtue of (4.2), (2.3) and (2.4), we deduce that 
-2a 2 (dive -2 I (a 2 a -2 

< ChllVeUll,-2- IIV 1L2 < C?ll1eull,-2 

and, as a result, that 

h 2 Ie I 1 2 2 
XII < C-Il Ve l _2 -2+ C8 F llep 11 a 2 . 

Collecting all above estimates and inserting them in (4.5), we realize that a 
suitable choice of c and Ko allows the term IIVell 2 2 appearing in the right- 
hand side of the resulting expression to be absorbed into its left side, thus 
yielding the desired estimate (4.4). o 

Remark 4.1. Instead of the duality argument (4.6), we may have applied the 
obvious inequality 

IX < CJllep I12_- + CIt1-1 ueI, 2-4. 

This would have led, however, to higher powers of logarithmic factors in the 
final estimates. 

Remark 4.2. Let HO = Hu, where Hh satisfies (3.3) and is defined locally; thus 

Ilh is an optimal interpolation operator in weighted norms. Then we split term 
VI above as follows: 

VI = (div ea,, -2ep) + (,7* 
2 

, ep) =: A+ B. 

In evaluating term A we make use of the required properties on Hh, together 
with (2.5) and (4.2), to arrive at 

A = (dive,, a ('p Ih(( Yep))+(div e a 2( p)) 

2 h2 h -1 <8II 1,I1a' +C oIe 12 + hU,, 
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The analysis of term B is similar to that of term IX above. In fact, we exploit 
the local character of Nh to replace eu by e U in (4.7) and next deal with m 
as follows: 

m = (diveU, I( 2_ a- 2)< Cho IHVeU,-2. 

These estimates lead to the following slight improvement of (4.4): 

117e _a2 < C (Ileu- + 2lepII2 + Eh)E 

The second step in our error analysis consists of deriving a (partial) error 
bound for the Velocity. 

Lemma 4.2. There exists a constant C > 0 such that 

2 2 ~ ~ ~ HeU~2 e~2) (4.8) leU- _4 < C - loIg Ol 1eUllar-2 + I ep 12 
Proof. We employ a duality argument. Let (v, q) E V x P be the solution to 
the auxiliary problem 

-Av + Vq = a4 e U 
(4.9) dv O 

divv = O. 

which, in view of (2.13), satisfies 

(4.10) ID2v II + 17Vqll,2 
< Co lllogo, le u 1-4 

Consequently, making use of (4.1), (4.2) and (4.9), we can express IIeUllj-4 as 
follows: 

2e~Hl-4 = (Veu, V(v - v)) + (div(vb - v), ep) + (diveuq-q). 

By (4.10), we thus have 

Ile H~4 < Ch (lVeUHll-2 + lleplla-2) (ID vIa2 + H Vqll,2) 

< ChI logO 0"2 (11VeUlla-2 + IlepHlar2 IleuHll-4 

which clearly implies the assertion (4.8). o 

Remark 4.3. Let v = HhV, where r~h is a local interpolation operator which 

verifies (3.3). Then, the middle term in the above expression of 1 eUll-4 can 
be also handled as follows: 

(div(v -v), ep) = (div(v - v) , p - p) < Ch I logo 
2 
le~llu~-41I1p - PIlla2 . 

This results in the following substitute for (4.8): 

Ileulla?4 <C hlogol (11VeUlla-2 +Eh) 

The final step entails the use of the weighted inf-sup condition to produce a 
(partial) error bound for the pressure. 
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Lemma 4.3. There exists a constant C > 0 such that 

(4.11) Ile ||-2 < CllogO0 (|1Ve1 He-2 +Eh) 

Proof. Set q: =p-ph - K1 p Ph . Then, for all vE YV* we have 

(divv, q) = (divv, ep) - (div vp-f) - divv, IKQfII) 

= (Vv, Veu) - (divv, p-p) 

< ||Vvila2 (llVeUll,-2 + Eh) 

as a consequence of (4.1) and the fact that' the rightmost term in the first line 
vanishes. Using now the weighted inf-sup condition (3.2) yields 

qr-2 <Cl01/2 sup (div Sq < C1logO"2 (lVeUII,,-2 + Eh) 

VEVh 
I 
IVV I r 

Finally, since p has mean value zero, we arrive at 

Iepl a 2 <P P-la-2 + llqll,-2 + Q7 f(P -ii) -2 

< CllogO "/2 (H VeUlla-2 +Eh) 

concluding the proof of the lemma. n 

What remains to be done is to assemble the partial results (4.4), (4.8) and 
(4.11) to end up with global error estimates in weighted Sobolev norms. We 
first obtain 

1 7eUlla-2 < c (4rlogol + qllogl) (1lVeulla-2 +Eh) + CC1'Eh 

< CK1 l1HVeullj-2 + C(K + KI loghl)Eh, 

where we have used the definitions of both 0 and ri. Then, taking K suffi- 
ciently large leads to the following bound for Veu: 

II V e U lj-2 < C|o10ghEh = CIloghI (IIV( - zi)-2 + II - 1l a-4 + I IP 11-2_) 

In order to derive error bounds for velocity and pressure, we just have to replace 
the latter estimate in (4.8) and (4.1 1), respectively. We then find 

I|eU|la-4 < C k2F log Eh IleplHl2 < Cl log 0 E*. 

We are now in a position to prove Theorem 4.1. Let x0 in (2.1) be chosen 
so that IVU(xO)l = 1V1eullL'(Q). The fact that VeU is piecewise polynomial, 
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coupled with (2.4), yields 

IIVeUIILOO(Q) < IIVeuIIJu(Q) + IIV(u-2)UL?(O) 

0 
< CIIVjUlla-2 + IIV(U - 

? c~~~h 1/2,2 + IIVQ(U ? CTh log h I "1'Eh /2+| (u AL' || 

? Co10gh| (IIV2 -Q)IIL(Q) + jjP PL(Q)) 

A similar calculation, now with a different choice of xO, leads to the remaining 
estimates for velocity and pressure. The theorem is thus proved. E 

Remark 4.4. The quasi-optimal pointwise error estimates in (4.3) contain log- 
arithmic factors which are probably not sharp. The main reason why they 
are worse than those for the Poisson's equation, produced by the method of 
weighted Sobolev norms, is the logarithm appearing in the weighted inf-sup 
condition (3.2). However, we may improve upon (4.3) whenever the operator 
Hh in (3.3), (3.4) can be constructed locally. In fact, combining Remarks 4.2 
and 4.3 with Lemma 4.3, and choosing 0 = KhI log hi/2, we find 

h1 IleulIL-(9) + Iloghl"/2IIVeuILOO(Q) + IleplIL-(Q) 

< Cllogh (12 in-f 11V(U v)IIL'() + lIP IqL (Q)) 

This result is similar to that in [10] but is still a bit worse than the one in [ 1]. 

Remark 4.5. It would be of interest to know whether the logarithms could be 
completely removed for k (degree of interpolation polynomials) > 1, as hap- 
pens for the Poisson's equation. 
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